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Helium mass flow rates in a microchannel were measured, for a wide Knudsen-number
range, in isothermal steady conditions. The flow Knudsen numbers, considered
here, cover the range from continuum slip regime to the near free molecular
regime. We used a single-channel system involved in an experimental platform more
powerful than those previously used. The experimental errors and uncertainties were
accurately investigated and estimated. In the continuum slip regime, it was found
that the first-order approach is pertinent for Knudsen number between 0.03 and
0.3. Moreover, the slip coefficient was deduced by comparing the experiments with
the theoretical first-order slip continuum approach. For Knudsen number between
0.03 and 0.7, a polynomial second-power form is proposed for the mass flow rate
expression. Otherwise, the experimental results on the mass flow rate were compared
with theoretical values calculated from kinetic approaches over the 0.03–50 Knudsen
number range, and an overall agreement appears through the comparison. It was also
found, when the Knudsen number increased, that the wall influence on measurement
occurred first through the accommodation process in the transition regime followed
by the wall influence through the aspect ratio in the free molecular regime.

1. Introduction
The development of microelectromechanical systems (MEMS) requires correct

prediction of the rarefied flows occurring in many kinds of small devices, such
as micro-pumps and micro-sensors. The necessity of optimizing their designs has
opened new prospects in the domain of rarefied gas experiments. MEMS appeared in
the early 1980s, and since then many papers on gas microflows have been published.
These studies concentrated on channel geometry and were limited to slip and near
transitional regimes (Pong et al. 1994; Harley et al. 1995; Arkilic et al. 1997, 2001;
Zohar et al. 2002; Maurer et al. 2003; Colin, Lalonde & Caen 2004).

In the present work, we extend the mass flow rate measurements for gas microflows
ranging from the continuum to the near free molecular regime, based on a single
microchannel. For such a geometry and for such a wide range of flow regimes, very
few measurements have been carried out: over the last fifty years, only one experi-
mental series involving different microchannels has been presented (Porodnov et al.
1974), whereas many measurements have been carried out for the tube geometry
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from the continuum to the free molecular regime (Dong 1956; Porodnov et al. 1974;
Tison 1993). The present measurements involve two main original features (especially
when compared to the measurements performed by Porodnov et al. 1974): first, our
experiments are carried out for inlet/outlet pressure ratios ranging between 3 and 5,
i.e. for non-dimensional pressure gradients of the same order as the pressure itself,
whereas in the Porodnov et al. (1974) experiments, the relative inlet/outlet pressure
difference is smaller than 1 %; secondly, the Porodnov et al. (1974) measurement
method is an unsteady procedure giving the gas volume flow rate whereas we use a
new measurement technique (Ewart et al. 2006) which allows us to measure very low
mass flow rates (<10−12 kg s−1) using a sensitive pressure gauge in order to detect
very small pressure rises in the outlet tank. The lack of results concerning the free
molecular regime in microchannels can be explained by the difficulties encountered
so far in accurately measuring such low mass flow rates.

The purpose of the present study is two-fold: (i) completing the database of
mass flow rate measurements, obtained in a single microchannel, ranging from the
continuum slip regime to the near free molecular regime; (ii) exploring the properties
of the gas/surface interaction according to the different flow regimes investigated here
and also according to various pressure gradient mean values. Therefore, in the slip
regime, the measured data of mass flow rates are compared with the analytical solution
of the Navier–Stokes equations associated to the first-order boundary condition. The
‘experimental’ velocity slip coefficient and the tangential momentum accommodation
coefficient (TMAC) are derived using this type of boundary condition and the
pertinence of a Knudsen number first-order treatment for helium is shown in the 0.03–
0.3 Knudsen number range. In the transition regime and in the near free molecular
regime, the measured data are compared with the theoretical results deduced from the
Boltzmann equation using various models: the BGK model (Loyalka 1975; Loyalka,
Stvorik & Park 1976) or the S model (Sharipov 1999a). The theoretical results
obtained by solving the linearized Boltzmann equation (Ohwada, Sone & Aoki
1989; Hickey & Loyalka 1990) were also considered for comparison. Globally, our
measurements appear in good agreement with the theoretical results. Nevertheless, the
full diffuse reflection at the wall, largely assumed in the theoretical kinetic approaches,
does not yield satisfactory fitting between the theoretical results and the experimental
mass flow rate values. Thus, the diffuse specular model (according to a Maxwell-type
reflection law) seems more suitable for describing the gas/wall interaction. However,
the tangential momentum accommodation coefficients deduced using this theoretical
frame turn out to be different in the slip regime and in the near free molecular
regime. Further investigations and complementary analyses are necessary to confirm
this conclusion.

2. Experiments
2.1. Description of the methodology and experimental set-up

The experimental method used in the present work to measure the mass flow rate
through a microchannel involves the use of two constant volume tanks and so may be
denoted a ‘constant-volume technique’. This method requires very large tank volumes,
much larger than the volume of the microchannel. Large tank sizes guarantee that
the microflow parameters are independent of time: although detectible, the mass
variations occurring in the tanks during the experiments do not call into question the
steady assumption. Thus, we must also set a limit for the maximal suitable variation
of the pressure in the second tank, according to the inlet and outlet conditions. These
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Figure 1. Mass flow experiment diagram. The valves A to D are used to impose and to
adjust the pressure in the inlet and outlet tanks.

Detectors A B C D

Full scale FS (Pa) 133 322 13 332.2 1333.22 133.322
Pressure limit max (Pa) 133 322 13 332.2 1333.22 133.322
Pressure limit min (Pa) 13 332 1333.2 133.32 13.332
Accuracy 0.20% of reading
Temperature effect on zero 0.0050% FS/K 0.015 % FS/K
Temperature effect on span 0.01% of reading/K
Resolution 0.0015% FS 0.0025 % FS
Inficon CDG 25-1000 T 25-100 T 25-10 T 45-1 T

Table 1. Technical data for the gas detectors manufactured by Inficon. The four detectors
have similar characteristics, but their full scales are different.

constraints are taken into account in the experimental set-up (figure 1). The gas flows
through a silicon microchannel fixed between two tanks in which the pressures remain
very close to the constant values Pin and Pout, respectively. The pressure variation in
the second tank owing to the gas flow through the microchannel is set at ±1 % of
the tank pressure averaged over the experiment. Consequently, the relative pressure
variation in the first tank remains close to the ±(0.2 %–0.33 %) depending on the
pressure ratio between the tanks. This pressure variation range corresponds to a
required experiment duration τ ranging from about a few seconds for the highest
mass flow rate measured (10−9 kg s−1) to about 120 s for the lowest (10−13 kg s−1).

The pressure measurements are carried out using simultaneously two detectors
chosen according to the pressure range (see table 1). One is located in the first
tank upstream of the microchannel and the other in the second tank downstream of
the microchannel. The errors in pressure measurements in each tank depend on the
characteristics of the pressure detectors (table 1). Thus, in the pressure range observed
during the experiments, the errors on the measurement of the outlet pressures may
be estimated to be smaller than 0.5 %.

It is also very important to measure the dimensions of the channel accurately
because the geometrical characteristics have a great influence on the mass flow rate:
for example, the analytical expression of the mass flow rate, in hydrodynamic and
slip regimes, is proportional to the power three of the channel height. Therefore,
the surfaces of the inlet and outlet sections have been scanned in the environmental
scanning mode (ESEM) with an electron microscope and the following estimations
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of the channel dimensions have been obtained: the channel height H is 9.38±0.2 µm,
its width w is 492 ± 1 µm and its length L is 9.39 ± 0.1 mm. Since the length of the
channel is much greater than its height, the channel end effects can be neglected.
Moreover, the roughness of the channel walls is estimated to be smaller than 20 nm.

The details about the connections required in the gas circuit and the estimation of
the leakage may be found in Ewart et al. (2006). The experiments are performed within
a narrow temperature range, excluding any heat source in the environment. During
each experiment, the temperature is not maintained, but controlled to be sufficiently
constant to justify the isothermal assumption as quantified in the following section.

2.2. Analysis of the non-isothermal effects

The technique used to measure the mass flow rate consists in determining in the outlet
tank a small pressure change due to the mass flowing from the microchannel. The
temperature variation in the outlet tank could directly perturb the significance of the
measurement. To make this clearer, let us write for this tank the law of perfect gases
in the form:

PoutV = mRT , (2.1)

where V represents the outlet tank volume which remains constant during the
experiment, and R is the specific gas constant. Pout, T and m are, respectively,
the pressure, temperature and mass of the gas in the outlet tank, at any time t of
the experiment time length τ . Let us define the variation dq of any thermodynamic
parameter q , occurring in the tank during the experiment time length (whatever the
reason for these variations). According to the comments made in the previous section,
these relative variations remain small, compared to 1. Therefore, they are deduced
from (2.1), verifying the relation

dPout

Pout

=
dm

m
+

dT

T
, (2.2)

which is easily transformed into:

dm

τ
=

V

RT

dPout

τ
(1 − ε), ε =

dT/T

dPout/Pout

. (2.3)

If ε is very small compared to 1, then dm/τ may be identified as the mass flow rate
Qm flowing from the microchannel, and dPout (termed δPout below) will allow direct
measurements of Qm. The maximal instantaneous temperature departure (from its
initial value) registered during the experiments is smaller than half a degree. Such
a departure certainly overestimates the probable temperature variation at any time.
Therefore, from the various points acquired during the experimental time τ , we
calculate the mean temperature value T and its corresponding standard deviation s.
The specification of the standard deviation is influenced (and so overestimated) by the
noise of the temperature probe and electronic acquisition card. Nevertheless, in the
present experiment, this estimation appears as a pertinent evaluation of the probable
temperature variation. In the most unfavourable case, this estimation leads to a
relative variation δT /T = s/T around the mean temperature equal to 0.0002, lower
than 0.01 for the relative variation δPout/Pout: ε is clearly smaller than 0.02. Thus, the
measurement based on the pressure rise may be considered as the measurement of an
isothermal mass flow rate,

Qm =
V

RT

δPout

τ
, (2.4)



Mass flow rate measurements in a microchannel 341

affected by a specific relative error of ±0.02 due to the temperature variations (see
(2.6)).

2.3. Pressure rise measurements and experimental error

Since the effects of the temperature variation are negligible, we may consider the flow
through the microchannel as a steady flow occurring between two tanks maintained
at pressures Pin and Pout, practically constant, respectively, with variations of the
order of ±1 % in the outlet tank and of the order of ±(0.2 %–0.33 %) in the inlet
tank (see § 2.1). These variations are smaller than the experimental error, and are
consistent with the steady assumption. Moreover, the isothermal mass flow rate may
be expressed in the form (2.4). To determine this mass flow rate, we will use the
registered data for pressures Pi at time instants ti . The stationary flow conditions
physically justify a pressure rise interpolation by means of a linear function of time
using a simple least-squares fit

Pf (t) = at + b, a =
δPout

τ
. (2.5)

The calculation of the coefficient a is characterized by a convenient value of the usual
determination coefficient r2, greater than 0.9993. Under the reasonable assumption of
negligible errors in determining the fixed time values ti , the error on coefficient a is
calculated using the classical expression of the errors on the linear fitting coefficients
of the least-squares method and yields a relative error smaller than ±0.1 %, in all
the cases where the error calculation is fulfilled; then to increase the reliability of
this evaluation we adopt a large upper bound of this error value (±0.5 %). Thus, the
usual evaluation of the measurement errors results from (2.4), (2.5) as:

�Qm

Qm

=
�V

V
+

�T

T
+

�a

a
, (2.6)

where �T/T , obtained through the temperature measurements, is negligible, but
where the non-isothermal effects previously evaluated (±2 %) must be taken into
account in the evaluation of �Qm/Qm. �V/V is the uncertainty on the volume
measurement (±2 %) and �a/a is the error on coefficient a (±0.5 % as seen above).
Moreover, since the leaks are estimated as totally negligible (Ewart et al. 2006), we do
not integrate them in the total uncertainty on the mass flow rate. Therefore, we obtain
a full uncertainty on �Qm/Qm smaller than ±4.5 %. The capabilities of the sensors
and vacuum pump employed so far did not allow us to reach the full free molecular
regime. Using the more powerful equipment now available will make it possible to
extend the investigations up to Knudsen numbers about five times higher.

3. Background theory
The flow in a rectangular channel has been studied experimentally for Knudsen

numbers ranging from 0.03 to 50, which means that the observed flow regime changes
from the hydrodynamic to the near free molecular regime. Many different theoretical
and numerical approaches have been used to solve the problem of gas flow through
a long channel (or two parallel plates) under isothermal flow conditions for a wide
Knudsen-number range (see Sharipov & Seleznev 1998; Karniadakis & Beskok 2002;
Graur, Méolans & Zeitoun 2006). We will present briefly the theoretical approaches
used in order to compare the measured and theoretical values of the mass flow rate
and of the velocity slip coefficients.
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3.1. Hydrodynamic and slip regimes

In the hydrodynamic and slip regimes, the flow through a rectangular channel has
been intensively studied and the problem of the choice of the appropriate boundary
conditions (first- or second-order following the Knudsen number) and the problem
of the limit of validity of the continuum approach (in terms of the Knudsen-number
range) remain an open question. In hydrodynamic and slip flow regimes, the flow
analysis may be developed using the continuum macroscopic equations (Navier–
Stokes equations) supplemented with slip boundary conditions at the wall. Assuming
a possible second-order boundary condition at the wall, in the isothermal case the
slip velocity reads:

us = ±A1λ

(
∂u

∂y

)
w

− A2λ
2

(
∂2u

∂y2

)
w

, (3.1)

where λ is the mean free path of the molecules which may be calculated using the
following well-known expression, very similar to that of the hard-sphere (HS) model
(Chapman & Cowling 1970)

λ = kλ
µ

P

√
2RT , kλ =

√
π

2
. (3.2)

In the physical conditions of the present study, we can use only the first-order
boundary condition, so the coefficient A2 = 0 and the slip condition (3.1) reads:

us = ±A1λ

(
∂u

∂y

)
w

. (3.3)

In this theoretical frame, the coefficient A1 may be presented in the form:

A1 =
σp

kλ
, (3.4)

where σp is the velocity slip coefficient. The mass flow rate through the rectangular
channel obtained from the Navier–Stokes equations with the first-order velocity slip
condition (Graur et al. 2006) is:

Ṁ =
H 3w�PPm

12µRT L
(1 + 6A1Knm), (3.5)

where �P = Pin − Pout, P = Pin/Pout and Knm = λ/H is the mean Knudsen number,
based on the mean pressure Pm = 0.5(Pin +Pout). This mean pressure is used in (3.2) in
order to determine the averaged mean free path. The influence of the lateral walls on
the mass flow rate is not taken into account, which is a correct approximation when
H � w, as is the case here. According to Sharipov (1999a) the lateral wall influence
may be taken into account by the factor 1 − 0.63H/w multiplying the mass flow rate
Ṁ , which gives 0.99 in our case where H/w = 0.019.

Furthermore, a non-dimensional mass flow rate may be deduced from (3.5):

S = Ṁ/
H 3w�PPm

12µRT L
= 1 + 6A1Knm. (3.6)

Equation (3.6) may be rewritten in the more compact form:

S = 1 + AtheorKnm, (3.7)

where Atheor = 6A1. The analytical expressions of the mass flow rate (3.5)–(3.7) will
be used for the calculation and the comparison with the corresponding measured
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values. We use the measured values of the mass flow rate for two main purposes:
to obtain the ‘experimental’ velocity slip coefficient; and to establish the limit of the
applicability of the continuum equations for this kind of flow. The term σp appears
to depend on the gas interaction model only through the viscosity µ.

3.2. Free molecular regime

In the case of a free molecular regime, the mass flow rate between two parallel plates
was obtained analytically by Cercignani & Daneri (1963) under the assumption of
full accommodation of the molecules at the wall and by Sharipov & Seleznev (1998)
in the case of the diffuse-specular scattering at the wall. For a channel of finite
width, the mass flow rate of the free molecular regime was found by Loyalka et al.
(1976) for a diffuse reflection of the molecules from the wall. In the case of two
parallel plates, the dimensionless mass flow rate, reduced as usual in the transi-
tional regime, tends to infinity when the Knudsen number increases (Cercignani &
Daneri 1963). This may be partly due to the characteristic mass flow rate chosen
to define the non-dimensional flow rate (see § 3.3); but whatever the choice, the
influence of the section aspect ratio will increase when the Knudsen number increases
because then the gas/gas collisions vanish and only the gas/wall collisions govern
the flow behaviour. Therefore in § 4, we will see that the models involving two
parallel plates differ more and more from our experimental results when Kn increases
strongly.

3.3. Transition flow regime

The most complicated domain for modelling is the transition flow regime, where the
Boltzmann equation should be solved. A review of the main results obtained in this
field may be found in Sharipov & Seleznev (1998). We will detail only the results
which are the most useful for the analysis of our experimental measurements. We will
start with the modelling of the flow between two parallel plates. The expression of a
volume flow rate between two parallel plates, for a large Knudsen-number range, was
obtained by Cercignani & Daneri (1963) solving the BGK kinetic equation by the
discrete ordinate method and assuming a diffuse reflection of the molecules from the
wall. The BGK model again, this time associated with a diffuse-specular reflection
on the solid surface, was also considered by Loyalka (1975). Moreover, the linearized
Boltzmann equation for the flow between two parallel plates was solved by Ohwada
et al. (1989) and Hickey & Loyalka (1990) for hard-sphere molecules and for a diffuse
reflection as boundary condition. The difference between the solution of the BGK
equation and that of the Boltzmann equation is only about 2 % (Sharipov & Seleznev
1998). The finite dimensions of the rectangular channel were taken into account by
Loyalka et al. (1976) when solving numerically the BGK kinetic equation using a
diffuse scattering. In this same case of rectangular channels with arbitrary height
to width ratios, two modellings of the collision integral: the BGK-model (Sharipov
1999a) and the S-model (Sharipov 1999b), both assuming a complete accommodation
of the molecules on the wall, were compared. In the isothermal case, the difference
between the mass flow rates obtained with these two models is less than 1 %
(Sharipov & Seleznev 1998). Since, as seen above, the difference between the solution
of the linearized Boltzmann equation and those of the two kinetic equation models is
also small, we will use below only the results given by the solution of the BGK model
(Sharipov 1999a) and (Loyalka 1975) in order to compare the theoretical results with
our measurements.
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All the approaches presented above use the same basic assumption: the local
pressure gradient, defined as follows, is small:

ν =
H

P

dP

dx
� 1. (3.8)

According to many authors (quoted above) this assumption allows the linearization
of the kinetic equation and that of the boundary conditions around an equilibrium
state, and so the calculation of a dimensionless flow rate Q through a cross-section
of the channel (or through a standard width, in the case of two infinite plates). This
dimensionless mass flow rate is

Q = −
√

2RT

HwPν
Ṁ, (3.9)

when the local pressure gradient dP/dx does not vary too much along the channel,
(3.9) does not vary either. Moreover, in this case, the dimensionless flow rate is roughly
independent of the mean pressure gradient characterizing the flow, but it depends
mainly on its rarefaction parameter (i.e. on an inverse Knudsen number):

δ =

√
π

2

H

λ
. (3.10)

This non-dimensional mass flow rate (3.9) considered as a function of the local
rarefaction parameter (3.10) was calculated by many authors (Loyalka 1975; Loyalka
et al. 1976; Ohwada et al. 1989; Hickey & Loyalka 1990; Sharipov 1999a, b). In all
these theoretical papers, the rarefaction parameter δ is supposed practically constant
along the channel. This assumption seems to be much more restrictive than (3.8).
However, in our experimental measurements, the pressure variations along the channel
are considerable (the ratio between the pressures in the inlet and outlet tanks ranges
between 3 and 5), and so the pressure ratios are very high compared to 1 and the
rarefaction parameter is not constant along the channel. However, some authors
(Sharipov & Seleznev 1998), consider that in a long channel, the local pressure
gradient defined as in (3.8) is always small at any pressure ratio, then it is possible to
apply this theoretical approach in the case of high pressure ratios, but it is necessary
to take into account the changes in the rarefaction parameter owing to the pressure
changes that are not small.

In order to compare our experimental results with existing theoretical models, we
adopted this point of view; i.e. we consider our theoretical results obtained in different
flows as being obtained in the same flow at different locations of the channel and
so for different local values of the rarefaction parameter. Nevertheless, in practice,
it is difficult to compare the measured and the calculated mass flow rates using the
dimensionless form (3.9), as the local pressure and local rarefaction parameter are
unknown. Therefore, integrating the two members of (3.9) along the channel and
using the property of the mass flow rate conservation, we deduce the following:

G =
L

√
2RT

H 2w(Pin − Pout)
Ṁ, (3.11)

with

G(δin, δout) =
1

δout − δin

∫ δout

δin

Q(δ) dδ. (3.12)

As noted in Sharipov (1999a), G, which is the mean value of Q along the channel,
no longer depends on the local pressure gradient, but only on its mean value.
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5 4 3
P

Quantity Min Max Min Max Min Max

Mass flow rate (10−13 kg s−1) 4.94 21 100 5.29 22 500 8.16 15 100
Inlet pressure (Pa) 60.4 109 825 65.1 115 474 121.2 96 665
Outlet pressure (Pa) 12.2 22 633 15.9 29 275 40.3 32 654
Average Knudsen number Knm 0.027 50.2 0.025 45.4 0.028 22.76
Experiment PE 4.82 5.14 3.90 4.11 2.90 3.06
Centred PC 4.98 4.01 2.98

Table 2. Experimental pressure range. P represents the desired ratio Pin/Pout, whereas PE is
the real ratio for each measurement, PC is the mean experimental ratio of PE .

The equations (3.11) and (3.12) may be used to calculate numerically the reduced
mass flow rate G(δin, δout) from the table of Q(δ) in Sharipov (1999a), where this non-
dimensional mass flow rate Q has been obtained from the BGK kinetic equation for
rectangular channels with various aspect ratios. In order to analyse the influence of the
gas/wall interaction on the mass flow rate, we will also use these relations to compare
our experimental data to the reduced mass flow rate obtained from the BGK model
kinetic equation used with a diffuse-specular scattering in Loyalka (1975): he considers
the flow between two parallel plates and we compare the measured and theoretical
values of the mass flow rate per width unit. A solution of the BGK equation also
with a diffuse-specular scattering is presented in Loyalka et al. (1976) for a channel
of finite rectangular section with an aspect ratio of 1, which unfortunately is different
from the very small ratio used in our experiments.

4. Results and discussion
The helium flow is studied for different flow regimes: from the hydrodynamic

regime for which the mean Knudsen number is 0.03 to the near free molecular regime
corresponding to a mean Knudsen number of 50. Each experiment is carried out
with a constant pressure ratio P between the tanks. The real pressure ratios PE

maintained in each experiment lie within narrow bands centred around three pressure
ratios PC close to P = 3, 4 and 5, respectively. The properties of these three series
are summarized in table 2. The results obtained for P = 5 are detailed in table 3.

The total Knudsen-number range investigated is too wide to be globally analysed
using a continuum approach. Therefore, we split the total Knudsen number range into
several parts and we consider first a part of this range below a maximum Knudsen
number of 0.7, relevant to the slip regime and, probably, to the beginning of the
transitional regime.

4.1. Polynomial expressions of the mass flow rate in slip and near transitional regimes

In this first range, the experimental dimensionless mass flow rate data are fitted with
first- and second-power polynomial forms of Knm:

S
exp
f = 1 + A

exp
i Knm + B

exp
i Kn2

m, i = 1, 2, (4.1)

by using a nonlinear least-squares method (Maurer et al. 2003), in order to describe
these regimes. Here, i corresponds to the order of the polynomial form (therefore
B

exp
1 = 0).
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Qm (kg s−1) Pin (Pa) Pout (Pa) T (◦K) Qm (kg s−1) Pin (Pa) Pout (Pa) T (◦K)

2.11×10−9 109 825 22 633 296.56 5.23×10−11 9691 1962.1 293.45
1.77×10−9 99 285 20 432 296.59 4.89×10−11 9330 1878.0 293.54
1.73×10−9 97 760 19 475 296.59 4.43×10−11 8106 1626.5 293.45
1.62×10−9 94 421 19 057 296.60 3.72×10−11 7383 1468.7 293.53
1.39×10−9 86 676 17 503 296.13 3.40×10−11 6772 1354.9 293.60
1.27×10−9 82 128 16 871 296.79 3.53×10−11 6614.4 1308.49 297.16
1.05×10−9 73 523 14 862 296.00 3.33×10−11 6332.5 1265.41 297.16
9.13×10−10 67 442 13 403 295.93 3.35×10−11 6133.5 1228.23 297.16
8.70×10−10 65 709 13 230.8 295.89 3.17×10−11 5831.2 1184.31 297.15
8.18×10−10 63 360 12 805.9 295.88 2.78×10−11 5398.6 1078.08 297.17
7.57×10−10 60 485 12 345.3 295.82 2.72×10−11 4952.0 989.72 297.16
7.55×10−10 60 632 12 197.3 295.78 2.48×10−11 4588.5 913.48 297.17
6.74×10−10 56 471 11 376.1 295.74 2.40×10−11 4267.3 854.60 297.16
6.36×10−10 54 568 11 164.3 296.84 2.24×10−11 4019.8 788.44 297.15
6.05×10−10 52 949 10 743.3 295.71 1.89×10−11 3404.8 680.68 297.15
5.54×10−10 49 977 10 059.8 295.71 1.66×10−11 3042.5 619.29 297.14
5.05×10−10 47 100 9458.3 295.71 1.65×10−11 2897.3 582.72 297.13
4.33×10−10 42 730 8569.9 296.58 1.35×10−11 2348.9 480.42 297.11
3.91×10−10 39 901 8002.1 296.59 1.04×10−11 1752.6 352.00 297.24
3.46×10−10 36 932 7456.8 296.66 9.74×10−12 1624.7 327.42 297.46
2.91×10−10 32 763 6494.8 296.68 8.97×10−12 1469.1 292.49 297.21
2.64×10−10 30 787 6159.4 296.78 7.64×10−12 1242.8 248.85 297.19
2.47×10−10 29 430 5916.6 296.89 7.24×10−12 1159.6 234.29 297.33
2.14×10−10 26 571 5302.5 296.97 6.14×10−12 996.0 196.85 297.20
1.87×10−10 24 041 4869.7 297.08 5.43×10−12 815.8 166.41 297.21
1.54×10−10 21 421 4328.8 297.14 4.83×10−12 736.4 148.64 297.53
1.49×10−10 21 025 4276.7 297.17 3.53×10−12 534.78 107.070 293.71
1.19×10−10 18 580 3774.7 294.85 2.43×10−12 348.33 71.585 293.71
1.05×10−10 16 914 3456.6 295.01 2.37×10−12 339.24 68.922 295.88
1.01×10−10 15 677 3136.8 295.25 1.90×10−12 261.65 52.635 295.88
8.60×10−11 14 218 2889.5 294.92 1.48×10−12 197.14 39.016 295.81
7.85×10−11 13 194 2662.8 295.24 1.07×10−12 132.13 26.106 293.73
6.97×10−11 11 669 2385.2 295.25 9.47×10−13 127.02 26.342 296.45
7.13×10−11 11 595 2337.7 295.05 7.66×10−13 90.62 17.626 295.69
5.62×10−11 10 456 2101.3 295.01 6.62×10−13 82.95 16.850 296.25
5.67×10−11 10 065 2052.8 294.74 5.59×10−13 68.32 13.642 295.65
5.67×10−11 9819 1988.5 294.88 4.94×10−13 60.39 12.208 295.41
5.00×10−11 9548 1912.7 294.75

Table 3. Parameters and results characterizing the experiment conditions for P = 5.

The coefficients A
exp
i and B

exp
i , obtained by applying the nonlinear least-squares

Marquard–Levenberg algorithm to the measured values of the mass flow rate,
normalized according to (3.6), are given in table 4. The uncertainty on these coefficients
is estimated using the standard error.

As is well known, a second-order effect according to the Knudsen number generally
exists in the slip regime and increases when the Knudsen number increases (below
one). In order to investigate this question, we compared the pertinence of various
fittings, using the linear polynomial form and then the quadratic form defined in
(4.1). These comparisons were fulfilled for various partial Knudsen-number ranges
and required the introduction of two additional parameters: the determination
coefficient r2 (as given in the software Matlab) and the squared residual sum
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P A
exp
1 sr1 r2

1 A
exp
2 B

exp
2 sr2 r2

2

Knudsen range (0.03–0.3)

5 8.30 ± 0.08 0.064 0.991 7.58 ± 0.20 3.418 ± 0.90 0.054 0.994
4 8.27 ± 0.06 0.043 0.996 7.87 ± 0.18 1.897 ± 0.82 0.040 0.998
3 7.73 ± 0.05 0.015 0.998 7.40 ± 0.12 1.526 ± 0.53 0.025 0.999

3–5 8.15 ± 0.05 0.060 0.992 7.67 ± 0.14 2.29 ± 0.62 0.056 0.993

Knudsen range (0.03–0.7)

5 8.69 ± 0.09 0.179 0.989 7.35 ± 0.20 2.80 ± 0.39 0.123 0.995
4 8.48 ± 0.05 0.093 0.997 7.95 ± 0.15 1.10 ± 0.29 0.079 0.998
3 8.54 ± 0.14 0.200 0.989 7.18 ± 0.29 2.36 ± 0.48 0.140 0.995

3–5 8.58 ± 0.05 0.163 0.991 7.57 ± 0.13 2.02 ± 0.24 0.126 0.995

Table 4. Experimental coefficients A
exp
i and B

exp
i obtained from the polynomial fitting of the

first (i = 1) or second (i = 2) degree, sr is the squared residual sum, and r is the determination
coefficient.

sr =
√

1/(n − p)
∑

e2
i to estimate the quality of the fit; here ei = S

exp
i − S

exp
fi

is
the local difference between the measured and the fitted values, and so represents the
local fitting error, n is the number of measurements, p is the number of unknown
coefficients in the fitting model. Analysing the values of these two coefficients given in
table 4, we find that the determination coefficients r2 of the first- and second-power
fittings are similar when considering the Knudsen-number range 0.03–0.3; but for
the widest range under consideration, 0.03–0.7, the determination coefficient of the
second-power fitting is closer to 1 than that of the first-power fitting. Moreover, the
values of the squared residual sum sr are similar for the first- and the second-power
fitting in the Knudsen-number range 0.03–0.3. However, for the widest Knudsen-
number range (0.03–0.7), the values of sr are always smaller for the second-power
fitting. On this basis, in the Knudsen zone 0.03–0.3, the first-power representation
gives globally satisfactory results. Thus, in this range, the quadratic fitting is not
required in order to obtain a good approximation of the measured values. Moreover,
it appears that the measurements are not sufficiently precise to give significant values
of the second-power coefficient. On the other hand, considering the uncertainties on
the fitting coefficients and the values of the statistical parameters defined above, in
the range 0.03–0.7, the second-power shape becomes apparent.

Furthermore, in order to establish the agreement better between the experimental
data and the first- and second-power fittings, respectively, we also compared the
errors on the measurements (estimated 4.5 %) with the standard error on the fit
curves

√
(1/n)Σe2

i /S
exp
m , here Sexp

m is the averaged value of the measured values.
Then, regarding the 0.03–0.3 Knudsen-number range, the standard error on the first-
and second-power fittings gives the same value, 3.5 %. For the 0.03–0.7 Knudsen-
number range, only the standard error on the second-power fitting remains equal
to 3.5 %, whereas that on the first-power fitting increases and becomes higher than
the experimental error. Thus, considering this new criterion, we again find good
agreement for the first-power fitting in the 0.03–0.3 Knudsen-number range and a
pertinent quadratic fitting for the 0.03–0.7 range.

The experimental results are presented in figure 2 in a non-dimensional form
according to the left-hand side of (3.6). The fittings of the first power (dashed line)
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Figure 2. Dimensionless mass flow rate obtained according to (3.6). The fitting of the
experimental data with the first- (dashed line) and the second- (solid line) power polynomial
function. �, pressure ratio P = 3; �, 4; �, 5.

and of the second power (solid line) are also plotted. Figure 2 shows clearly the
presence of a slight second-power effect appearing for a mean Knudsen number
higher than 0.5, which confirms the analysis given above.

Finally, under the considered conditions (isothermal helium flows in rectangular
channels) and in the restricted Knudsen-number range defined above (slip regime and
near transitional regime, i.e. Kn � 0.7 < 1), we can again distinguish two regions.

(i) A lower Kn range 0.03–0.3 where the linear fitting appears convenient whereas
the quadratic one seems useless and non-significant. Moreover, considering that the
corresponding Knudsen values are small enough we have characterized this range
as corresponding to hydrodynamic and slip regimes. Thus, we modelled it using the
first-order slip continuum model described in § 3.

(ii) A Kn range extending beyond 0.5, and here precisely to 0.7, where, fitting
our mass flow rate data, a quadratic behaviour appears clearly according to Kn.
Moreover, in this zone, the second-power coefficient becomes significant and largely
more precise than all those derived from previous experiments in the same range
(Maurer et al. 2003).
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P α σp α1% σp1%

Knudsen range (0.03–0.3)

5 0.900 ± 0.005 1.226 ± 0.011 0.895 ± 0.005 1.238 ± 0.011
4 0.903 ± 0.004 1.221 ± 0.009 0.897 ± 0.004 1.233 ± 0.009
3 0.938 ± 0.004 1.142 ± 0.007 0.933 ± 0.004 1.153 ± 0.007

3–5 0.910 ± 0.004 1.204 ± 0.007 0.905 ± 0.004 1.216 ± 0.007

Table 5. Experimental tangential momentum accommodation coefficients (α) and slip coeffi-
cients σp obtained using the first-power fit. The errors in the table derive from the experimental
error in A

exp
1 . Coefficients α1 %, σp1%

are the slip and accommodation coefficients calculated
taking into account the correction due to the channel finite-width effects (about 1 %) (Sharipov
1999a).

4.1.1. First-order modelling in the slip regime

According to the above conclusion, about the Knudsen range 0.03–0.3, we compared
theoretical (3.6) and experimental (4.1) mass flow rate expressions. Thus, coefficient
A1 may be expressed in the form:

A1 =
σp

kλ
= A

exp
1 /6. (4.2)

This gives the experimental estimation of the velocity slip coefficient summarized
in table 5. Of course, this coefficient is calculated using the first-power fitting. This
coefficient does not depend significantly on the pressure ratio. These values are slightly
different from two theoretical predictions of the slip coefficient: σp = 1.012 given by
Kogan (1969) and σp = 1.016 given by Albertoni, Cercignani & Gotusso (1963). These
coefficient values have been obtained from the kinetic equation BGK model under
the assumption of a full accommodation of the molecules at the wall.

As mentioned in § 3, the value of σp is affected by the lateral wall influence (Sharipov
1999a). In our case, H/w = 0.019, the correction resulting from this influence is about
1 % and we have corrected the value of σp in table 5.

Then we compared our results with other experimental results, especially with those
concerning the velocity slip measured by Porodnov et al. (1974). They assumed a linear
dependence of the mass flow rate on the Knudsen-number, which may be justified by
the narrow experimental Knudsen-number range (below 0.04) and so they obtained
the velocity slip coefficient from volume flow rate measurements using the linear
least-squares method. We must take into account that the experimental conditions
differ on two other points, which may explain some differences in our respective
results. First, the variation of the pressure between the two tanks is much smaller
than in our experiments. Moreover, it should be noted that the arrangement of the
surfaces for both experimental studies is not the same. Porodnov et al. (1974) used
a glass surface with two types of irregular roughness: the first one with an averaged
value of roughness ∼1–5 µm (glass), or, in relative value, 1.1–5.6 % of the channel
height; and the second one with an averaged roughness ∼0.05 µm (smooth glass), or
0.055 % of their channel height. In the present study, we used a silicon surface with a
roughness �20 nm, i.e. in relative value, less then 0.2 % of our channel height, which
represents an intermediate value ranging between the roughness of the two types of
surface used in Porodnov et al. (1974). The value obtained for the slip coefficient is
between the two values found by Porodnov et al. (1974) (see table 6), which confirms
that the roughness is an important characteristic parameter of the surface in our
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Coefficient α σp

Porodnov et al. (1974)2 0.958 ± 0.005 1.099 ± 0.02
Porodnov et al. (1974)3 0.862 ± 0.006 1.320 ± 0.01
Colin et al. (2004)1 0.998 1.02
Maurer et al. (2003)1 0.977 ± 0.03 1.06 ± 0.07
Present results1 0.910 ± 0.003 1.204 ± 0.007
Albertoni et al. (1963)T 1 1.016

Table 6. The tangential momentum accommodation coefficients (α) and the slip coefficient for
helium flow (1silicon, 2glass, 3smooth glass, T theoretical values). The accommodation coefficient
α is calculated from (4.3). The present results correspond to the 0.03–0.3 Knudsen range and
averaged for all the pressure ratios used (line (3–5) in table 5).

measurements, as noted also in Porodnov et al. (1974). The nature of the surfaces
was also different: glass in Porodnov et al. (1974); and silicon in the present work.

Accommodation coefficient. From the experimental estimation of the velocity slip
coefficient we also derived the value of the accommodation coefficient using the
Maxwell diffuse-scattering model. The use of the usual Maxwell kernel for the gas–
surface interaction gives the following value for the velocity slip coefficient, when
neglecting the Knudsen-layer influence

σM
p =

√
π

2

2 − α

α
,

where α is the part of the molecules reflected diffusively. Moreover, it is shown
using scattering kernel formalism (Cercignani 1990) that α represents also the
accommodation coefficient of any kinetic molecule parameter; but establishing σM

p ,
Maxwell (1878) considered α as the accommodation coefficient of the momentum
tangential component, since it is usual to confer this meaning on α when used in the
slip coefficient expression.

Nevertheless, in the case of a full accommodation, the theoretical coefficient σM
p ,

which does not include the Knudsen-layer correction, is 0.886, which is different from
the well-known theoretical diffuse value given in Albertoni et al. (1963). Therefore, we
report here another method to calculate the accommodation coefficient proposed by
Loyalka, Petrellis & Stvorick (1975) taking into account the Knudsen layer influence.
They calculated the values of the slip coefficient using the BGK kinetic model
and a Maxwellian diffuse-specular scattering kernel over the whole range of values
of accommodation coefficient α; a simple ‘modified’ expression associating the slip
coefficient and the accommodation coefficients was proposed:

σp(α) =
2 − α

α
(σp(1) − 0.1211(1 − α)), (4.3)

where σp(1) is the slip coefficient for α = 1 equal to 1.016, i.e. the value theoretically
obtained by Albertoni et al. (1963).

Thus, based on (4.3) and on the measured value of the velocity slip coefficient, we
can calculate the ‘experimental’ tangential momentum accommodation coefficient α

(α = 0.910), which is given in table 6 with the accommodation coefficients obtained
by other authors. All the measurements quoted in this table were carried out using
different experimental techniques, in channels with different surfaces. The results in
Colin et al. (2004) and Maurer et al. (2003) were obtained using the second-power fit
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Coefficient A
exp
2 B

exp
2 Knm

Maurer et al. (2003) 7.20 ± 0.3 2.76 ± 1.2 0.06 − 0.8
Present results 7.57 ± 0.13 2.02 ± 0.24 0.03 − 0.7

Table 7. The second-power fitting coefficients A
exp
2 and B

exp
2 obtained in Maurer et al. (2003)

and in the present paper.

and also a larger Knudsen-number range: 0–0.44 in Colin et al. (2004) and 0–0.8 in
Maurer et al. (2003).

We can also estimate the accommodation coefficient using the values obtained
numerically, from the BGK kinetic equation in Loyalka (1975), where the mass flow
rate is tabulated for a varying coefficient: for our non-dimensional measured values
of mass flow rate, using the table given in Loyalka (1975), we find an accommodation
coefficient close to 0.96 (within the 0.03–0.3 Knudsen-number range). We give this
evaluation process because we shall use this one exclusively for the accommodation
evaluation in the transitional and the free regime (see § 4.2). From the previous
analysis, we may provisionally conclude that the silicon surface must be described as
a quasi-diffuse surface.

4.1.2. Quadratic mass flow rate behaviour

The coefficients of the second-power fitting (Aexp
2 , B

exp
2 ) are given in table 7. The

values found for coefficient B
exp
2 show that a significant Knudsen second-power

influence appears when fitting the mass flow rate in the 0.03–0.7 Knudsen-number
range. Within this range, we obtained pertinent values for this second-power
coefficient. Similar experimental study of this quadratic form was also performed
by Maurer et al. (2003) and presented as resulting from the second-order effect. These
authors processed a large number of measurements obtained for a Knm increasing up
to 0.8, i.e. in a Knudsen-number range close to our experimental range (0.03–0.7). They
reported that their second-order coefficient B

exp
2 appears very sensitive to experimental

errors. In the present work, these errors are much smaller than those in Maurer et al.
(2003). In any case, as shown in table 7, the results obtained by Maurer et al. (2003)
are in good agreement with the present results. Considering the respective uncertainties
given in table 7, it is clear that the two results are consistent. Of course, this agreement
appears as a positive check of our experimental technique. Moreover, this agreement
tends to prove that in plan geometry, the second coefficient B

exp
2 does not depend

significantly on the channel height or on the pressure. In addition, the precision,
largely better than in Maurer et al. (2003), may be improved using new sensors. Thus,
this fitting presents some interest for engineering. Nevertheless, even though done by
other authors (Maurer et al. 2003; Colin et al. 2004), we did not analyse this mass
flow rate behaviour in the frame of Navier–Stokes second-order modelling, because
in our investigations we cannot exclude the possibility that high-order components
are involved in the result.

4.2. Transitional and free molecular regimes

The measured mass flow rates are given in figure 3 in a non-dimensional form
according to (3.11) for pressure ratios P =3, 4 and 5. The results are plotted as a
function of the rarefaction parameter δm calculated according to (3.10) using the mean
pressure in the channel. The comparison between the results obtained from different
pressure ratios sustains the hypothesis that this experimental non-dimensional mass
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Figure 3. Free-molecular scaling of experimental mass flow rate in a channel calculated
according to (3.11) with three pressure ratios and theoretical curves: Sharipov (1999a) (full
line) rectangular channel H/w = 0.02 or Loyalka (1975) parallel plates (dash line). �, pressure
ratio P = 3; �, 4; �, 5.

flow rate does not depend much on this parameter, as was previously described in
the slip regime.

In order to compare this measured mass flow rate with the available theoretical
results, we used the numerical solution of the BGK model equation obtained by
Sharipov (1999a) with a diffuse boundary condition for the molecules impinging on
the wall in the rectangular channel with H/w = 0.02 cross-section. These results are
presented in the form of the non-dimensional mass flow rate Q, (3.9), as a function of δ

under the assumption of ‘small pressure ratio’. As was mentioned in § 3, we integrated
the non-dimensional quantity Q over δ in order to compare with our measurements
where the pressure ratio is not close to 1 along the channel. In figure 3, the theoretical
mass flow rate obtained after integration (cf. (3.11), (3.12)) is represented as a solid
line. In this figure, we also compared our measurements with the results of Loyalka
(1975) obtained in the same way for the flows between two parallel plates (dashed
line). In the slip regime and at the beginning of the transitional regime, the difference
between the mass flow rates from the two theoretical models (parallel plates and
channel characterized by a relatively small height/width ratio) is small. However, at
the beginning of the free molecular regime (Kn =10–15 or δ = 0.07–0.1), a difference
appears between the curves of the two theoretical models. The experimental results
apparently behave in a surprising way: in fact, along all the transitional regime
and up to the near free molecular regime (0.7 <Kn < 10–15, or 1.5 >δ > 0.1–0.07)
the measurements seem to be rather closer to the theoretical results derived from
Loyalka (1975); this probably means that in the transitional regime, the influence of
the wall is not yet sufficiently dominant to yield significant differences between the
cases H/w = 0.019 and H/w =0.0 which corresponds to the theoretical treatment by
Loyalka (1975). However, when Kn increases more strongly (δ decreasing strongly) in
the full free molecular regime and then when Kn tends to infinity (δ tends to zero)
the asymptotic behaviour of the Loyalka (1975) results (parabolic branch) becomes
increasingly inappropriate. The measured values (obtained here from Kn = 15 up to
Kn = 50, i.e. 0.01 <δ < 0.07) appear increasingly far from the Loyalka solution and
close to an asymptotic value predicted by Sharipov (1999a).
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Figure 4. Free-molecular scaling of experimental mass flow rate in a channel calculated
according to (3.11) with three pressure ratios and theoretical curves (Loyalka 1975) with – – –,
α = 0.92; - - -, 0.96; —–, 1. �, pressure ratio P = 3; �, 4; �, 5.

Furthermore, in order to evaluate now the influence of the surface structure and
roughness (rather than that of the surface shape previously analysed through the
aspect ratio), we used the results obtained by Loyalka (1975) with the BGK model
and the Maxwellian diffuse-specular reflection on the surface. The corresponding
non-dimensional mass flow rates G obtained with the technique described above are
presented in figure 4 where different values of the accommodation coefficient, ranging
from 0.92 to 1, are tested. This study points out two main features: first, in the Knudsen
intermediate range defined above (0.7 < Kn < 10–15, or 1.5 >δ > 0.1–0.07), figure 4
shows that the theoretical model of Loyalka predicts an increasing influence of the
accommodation coefficient changes, when the Knudsen number increases. Moreover,
according to previous comments on the aspect ratio, in the transitional range, the
gas behaves first according to Loyalka (1975) (with α < 1) and only then (for a near
free molecular regime) does it behave according to Sharipov (1999), where α = 1.
Thus, it seems that when the rarefaction increases, i.e. when there are relatively more
gas/wall collisions than gas/gas collisions, the increase of the boundary-condition
effects on the flow operates first through the accommodation phenomenon and only
then, through the surface aspect ratio. Secondly, a good agreement of measurements
and Loyalka calculations is found for α = 0.96, better than for α = 1, in the δ range
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from 0.1 to 1 (corresponding to the transitional regime). This result confirms that a
full accommodation on the surface is inappropriate in the transitional range as well as
in the slip regime: moreover, it seems also to indicate, at least in the helium isothermal
case, that when the same theoretical frame is applied to analyse experimental results,
the same accommodation coefficient (of tangential momentum) is found in the slip
and transitional regimes. Globally, the comparison of theory and experiments is
satisfactory, if we consider that the experimental measurements are not free from
errors and that the finite width of the channel section certainly influences the mass
flow rate for very high Knudsen numbers. Therefore, for a more accurate analysis of
the combined effects of the partial accommodation and of the non-infinite rectangular
section of the channel, it would have been interesting to compare the measurements
with theoretical models taking into account both the channel aspect ratio and a
diffuse-specular reflection. However, this kind of theoretical result cannot be found
in the literature.

5. Conclusions
A technique devoted to the measurement of gas mass flow rates in microchannels is

implemented, for isothermal helium flows. A wide Knudsen-number range, from the
continuum slip regime to the near free molecular regime, is explored. The errors and
uncertainties of the experimental method are accurately investigated and estimated.
By analysing the fitting parameters, the pertinence of the first-order velocity slip
conditions is shown in the 0.03–0.3 Knudsen range. The accommodation coefficient
calculated using the classical Maxwell reflection law associated with the continuum
approach, is slightly different (about 5 % smaller) from that deduced from the kinetic
approach used by Loyalka (1975). However, both coefficients are smaller than 1, which
confirms that the accommodation of helium gas on a silica surface is not completely
diffuse. Then, a quadratic form was proposed for the mass flow rate in the 0.03–0.7
Knudsen-number range, possibly useful in engineering.

Then the measured values of the mass flow rate are compared with the
corresponding values given by theoretical kinetic approaches over almost all the
Knudsen range, especially in the transitional and near free molecular regimes. This
comparison is globally satisfactory. The difference between the theoretical curves
obtained from the BGK equation for parallel plates and for rectangular channels,
respectively, becomes apparent immediately when reaching the transitional regime.
However, considering the measurements, the aspect ratio influence becomes significant
only from the free molecular regime: then in this regime, even in our case where the
aspect ratio of the channel (height/width) is relatively small (0.019), it is necessary to
take the lateral wall influence into account.

To deduce the accommodation coefficient in the transitional regime (and possibly
in the free molecular regime) only the kinetic method used by Loyalka (1975) (BGK
model associated with a Maxwell reflection law) was available. Thus, according to
this approach, the influence of the accommodation coefficient (on the mass flow rate)
also increases immediately when reaching the transitional regime. Of course, this
was not controlled experimentally because it would have required the testing of the
helium gas on different surfaces (or at least testing various gases in the same channel)
which will be the objective of a future study. Nevertheless, when the Knudsen number
increases, the increase of the wall influence on the measurements occurs first (i.e. in
the transitional regime) through the accommodation process and then (in the free
molecular regime) through the aspect ratio influence. Moreover, using the kinetic
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analysis of Loyalka in both transitional and continuum slip regimes we obtain, from
experiments, a similar value for the accommodation coefficient, i.e. (as previously
seen) a value slightly different from that derived in the slip regime using continuum
modelling.
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